skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "arXiv"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. arxiv (Ed.)
    Free, publicly-accessible full text available May 31, 2026
  2. arXiv (Ed.)
    In the event of a nuclear accident, or the detonation of a radiological dispersal device, quickly locating the source of the accident or blast is important for emergency response and environmental decontamination. At a specified time after a simulated instantaneous release of an aerosolized radioactive contaminant, measurements are recorded downwind from an array of radiation sensors. Neural networks are employed to infer the source release parameters in an accurate and rapid manner using sensor and mean wind speed data. We consider two neural network constructions that quantify the uncertainty of the predicted values; a categorical classification neural network and a Bayesian neural network. With the categorical classification neural network, we partition the spatial domain and treat each partition as a separate class for which we estimate the probability that it contains the true source location. In a Bayesian neural network, the weights and biases have a distribution rather than a single optimal value. With each evaluation, these distributions are sampled, yielding a different prediction with each evaluation. The trained Bayesian neural network is thus evaluated to construct posterior densities for the release parameters. Results are compared to Markov chain Monte Carlo (MCMC) results found using the Delayed Rejection Adaptive Metropolis Algorithm. The Bayesian neural network approach is generally much cheaper computationally than the MCMC approach as it relies on the computational cost of the neural network evaluation to generate posterior densities as opposed to the MCMC approach which depends on the computational expense of the transport and radiation detection models. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  3. arXiv (Ed.)
    This study addresses the challenge of integrating social norms into robot navigation, which is essential for ensuring that robots operate safely and efficiently in human-centric environments. Social norms, often unspoken and implicitly understood among people, are difficult to explicitly define and implement in robotic systems. To overcome this, we derive these norms from real human trajectory data, utilizing the comprehensive ATC dataset to identify the minimum social zones humans and robots must respect. These zones are integrated into the robot’s navigation system by applying barrier functions, ensuring the robot consistently remains within the designated safety set. Simulation results demonstrate that our system effectively mimics human-like navigation strategies, such as passing on the right side and adjusting speed or pausing in constrained spaces. The proposed framework is versatile, easily comprehensible, and tunable, demonstrating the potential to advance the development of robots designed to navigate effectively in human-centric environments. 
    more » « less
  4. arXiv (Ed.)
    Using resurgent analysis we offer a novel mathematical perspective on a curious bijection (duality) that has many potential applications ranging from the theory of vertex algebras to the physics of SCFTs in various dimensions, to q-series invariants in low-dimensional topology that arise e.g. in Vafa-Witten theory and in non-perturbative completion of complex Chern-Simons theory. In particular, we introduce explicit numerical algorithms that efficiently implement this bijection. This bijection is founded on preservation of relations, a fundamental property of resurgent functions. Using resurgent analysis we find new structures and patterns in complex Chern-Simons theory on closed hyperbolic 3-manifolds obtained by surgeries on hyperbolic twist knots. The Borel plane exhibits several intriguing hints of a new form of integrability. An important role in this analysis is played by the twisted Alexander polynomials and the adjoint Reidemeister torsion, which help us determine the Stokes data. The method of singularity elimination enables extraction of geometric data even for very distant Borel singularities, leading to detailed non-perturbative information from perturbative data. We also introduce a new double-scaling limit to probe 0-surgeries from the limiting r → ∞ behavior of 1 r surgeries, and apply it to the family of hyperbolic twist knots. 
    more » « less
  5. arXiv:2402.05300v2 (Ed.)
    This paper considers a multi-player resource-sharing game with a fair reward allocation model. Multiple players choose from a collection of resources. Each resource brings a random reward equally divided among the players who choose it. We consider two settings. The first setting is a one-slot game where the mean rewards of the resources are known to all the players, and the objective of player 1 is to maximize their worst-case expected utility. Certain special cases of this setting have explicit solutions. These cases provide interesting yet non-intuitive insights into the problem. The second setting is an online setting, where the game is played over a finite time horizon, where the mean rewards are unknown to the first player. Instead, the first player receives, as feedback, the rewards of the resources they chose after the action. We develop a novel Upper Confidence Bound (UCB) algorithm that minimizes the worst-case regret of the first player using the feedback received. 
    more » « less
  6. arXiv:2401.07170v1 (Ed.)
    This paper considers online optimization for a system that performs a sequence of back-to-back tasks. Each task can be processed in one of multiple processing modes that affect the duration of the task, the reward earned, and an additional vector of penalties (such as energy or cost). Let A[k] be a random matrix of parameters that specifies the duration, reward, and penalty vector under each processing option for task k. The goal is to observe A[k] at the start of each new task k and then choose a processing mode for the task so that, over time, time average reward is maximized subject to time average penalty constraints. This is a renewal optimization problem and is challenging because the probability distribution for the A[k] sequence is unknown. Prior work shows that any algorithm that comes within ϵ of optimality must have (1/ϵ^2) convergence time. The only known algorithm that can meet this bound operates without time average penalty constraints and uses a diminishing stepsize that cannot adapt when probabilities change. This paper develops a new algorithm that is adaptive and comes within O(ϵ) of optimality for any interval of  (1/ϵ^2) tasks over which probabilities are held fixed, regardless of probabilities before the start of the interval. 
    more » « less
  7. arXiv:2311.11180v1 (Ed.)
    This paper presents a subgradient-based algorithm for constrained nonsmooth convex optimization that does not require projections onto the feasible set. While the well-established Frank-Wolfe algorithm and its variants already avoid projections, they are primarily designed for smooth objective functions. In con- trast, our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints. It achieves an ϵ-suboptimal solution in O(ϵ^−2) iterations, with each iteration requiring only a single (potentially inexact) Linear Minimization Oracle (LMO) call and a (possibly inexact) subgra- dient computation. This performance is consistent with existing lower bounds. Similar performance is observed when deterministic subgradients are replaced with stochastic subgradients. In the special case where there are no functional inequality constraints, our algorithm competes favorably with a recent nonsmooth projection-free method designed for constraint-free problems. Our approach uti- lizes a simple separation scheme in conjunction with a new Lagrange multiplier update rule. 
    more » « less